ResIF 435L1

Aktivierter Lötdraht

ersetzt durch

ResIF 435L1 been replaced by .

For those still interested:

Interflux ResIF 435L1 is a colophony free, activated no-clean lead-free solder wire for surfaces that are difficult to solder. ResIF 435L1 can be used for automated soldering as well as for hand soldering.

ResIF 435L1 SnAgCu 500g

Geeignet für

  • Roboterlöten ist eine Technologie, die in der Elektronikfertigung eingesetzt wird, um elektronische oder elektromechanische Bauteilen mit einem Trägermaterial zu verbinden. Bei den Bauteilen handelt es sich in der Regel um durchkontaktierte Bauteile und bei dem Trägermaterial um eine Leiterplatte. Das Roboterlöten wird hauptsächlich in Fällen eingesetzt in denen die Standardlötverfahren wie Reflow-, Wellen- und Selektivlöten nicht verwendet werden können, z.B. wegen der Temperaturempfindlichkeit der Bauteilen und der begrenzten Lötbarkeit der Oberfläche. Im Allgemeinen ist das Roboterlöten ein eher langsamer Lötprozess, der sich nicht wirklich für große Produktionsmengen eignet. Der Lötroboter hat eine benetzbare Lötspitze. Die Temperatur dieser Lötspitze kann auf eine bestimmte Temperatur eingestellt werden, die durch die verwendete Lotlegierung bestimmt wird, die mit Hilfe eines Lötdrahtes angebracht wird. Die Lötspitze wird auf den zu lötenden Oberflächen positioniert. Die X-Y-Z-Positionierung kann von einem System zum anderen variieren. In einigen Fällen führt die Lötspitze die gesamte Bewegung aus, in anderen Fällen wird die X-Y-Positionierung durch die Bewegung der Leiterplatte vorgenommen. Einige Systeme können auch den Winkel der Lötspitze programmieren und von welcher Seite sie auf die lötbaren Oberflächen zugreift. Dies kann nützlich sein, wenn die Zugänglichkeit zu den lötbaren Oberflächen eingeschränkt ist, z.B. durch Bauteilen, die sich bereits auf der Leiterplatte befinden von einem früheren Bestückungs-/Lötprozess. In einem ersten Schritt wird die Lötspitze die zu lötenden Oberflächen vorheizen. Um die Wärmeübertragung zu begünstigen, wird im Allgemeinen bereits etwas Lot auf die Kontaktfläche zwischen der Lötspitze und den zu lötenden Oberflächen gegeben. Das flüssige Lot verbessert die Wärmeübertragung und beschleunigt den Prozess. Die Dauer des Vorheizens wird durch die thermische Masse des Bauteils und der Leiterplatte bestimmt. Danach wird die richtige Menge an Lötdraht hinzugefügt und die flüssige Lotlegierung benetzt die zu lötenden Oberflächen so dass das Bauteil und die Leiterplatte mit einer Lötstelle verbunden werden. Die Hauptschwerpunkte des Roboterlötprozesses sind in der Regel die Optimierung der Lötgeschwindigkeit, die Einschränkung von Lot- und Flussmittelspritzern, die Begrenzung der Bildung von Flussmittelrückständen nach dem Löten und die Minimierung der Verschmutzung der Lötspitze. Ein wichtiger Parameter in diesem Zusammenhang ist der verwendete Lötdraht und insbesondere das Flussmittel, das in diesem Lötdraht enthalten ist. Für ein schnelleres Löten wird häufig ein aktivierter (halogenierter) Lötdraht der Klassifizierung 'L1' oder höher verwendet. Es gibt Lötdrähte, die speziell für das Löten mit Robotern entwickelt wurden. Sie sorgen nicht nur für schnelles Löten, sondern auch für weniger Spritzer, Flussmittelrückstände und Verschmutzung der Lötspitze. Es gibt sie auch in der 'L0'-Klassifizierung.

  • Handlöten ist eine Technologie in der Elektronikfertigung, bei der ein Handlötkolben verwendet wird, um eine Lötstelle zu bilden oder ein Bauteil von einer Leiterplatte zu entlöten. Das Verfahren wird vor allem bei Nacharbeit und Reparatur eingesetzt, aber auch zum Löten einzelner Bauteilen, die beim Massenlötverfahren (Reflow- oder Wellenlöten) ausgelassen wurden. Dies kann an der Verfügbarkeit oder der Temperaturempfindlichkeit dieser Bauteile liegen. Der Lötkolben ist normalerweise Teil einer Lötstation, die über eine Stromversorgung verfügt, die die Temperatur des Lötkolbens steuert. Diese Temperatur kann je nach verwendeter Lotlegierung eingestellt werden und liegt normalerweise zwischen 320°C und 390°C. Der Lötkolben hat eine austauschbare Lötspitze, die je nach dem zu lötenden Bauteil ausgewählt werden kann. Für eine optimale Wärmeübertragung ist eine möglichst große Lötspitze empfehlenswert, vor allem beim Löten von (thermisch schweren) Durchkontaktierten Bauteilen. Beim Löten von thermisch schweren Bauteilen und Platinen ist auch die Leistung der Lötstation wichtig, um die eingestellte Temperatur der Lötspitze zu halten. Bei Nacharbeit und Reparatur ist es unrealistisch, die optimale Lötspitze für jedes einzelne Bauteil zu wechseln, und es werden nur einige Lötspitzen verwendet. Es gibt Lötspitzen zum Löten von mehreren Lötstellen hintereinander von SMD-Bauteilen, wie z.B. für SOICs (Small Outline Integrated Circuit) und QFPs (Quad Flat Package). Um die Wärmeübertragung und das Fließen des Lots zu unterstützen, sind die Lötspitzen benetzbar, das heißt, sie gehen eine Wechselwirkung mit der Lotlegierung ein. Während des Lötens oxidieren diese Spitzen und können ihre Benetzbarkeit verlieren, wodurch die Wärmeübertragung behindert wird. Dies kann vermieden werden, indem Sie die Lötspitze z.B. mit einem Spitzenverzinner reinigen. Nach einiger Zeit nutzen sich die Lötspitzen trotzdem ab und müssen ersetzt werden. Die Lebensdauer der Lötspitze kann optimiert werden, indem Sie die Verwendung von abrasiven oder aggressiven Lötspitzenreinigern vermeiden oder die Lötspitze nicht mechanisch reinigen, z.B. mit Stahlwolle oder Schleifpapier. Die Verwendung eines absolut halogenfreien Lötspitzenverdünners ist ratsam. Beim Handlöten wird das Lot für die Lötstelle in der Regel durch einen Lötdraht bereitgestellt. Ein Lötdraht ist in verschiedenen Durchmessern und verschiedenen Legierungen erhältlich und enthält eine bestimmte Menge eines bestimmten Flussmittels. Die Legierung ist in der Regel die gleiche oder eine ähnliche Legierung wie für das Massenlötverfahren (Reflow-, Wellen- oder Selektivlöten). Der Durchmesser wird entsprechend der Größe der Lötstelle gewählt. Der Flussmittelgehalt im Lötdraht richtet sich in der Regel nach der thermischen Masse des zu lötenden Bauteils und der Platine. (Thermisch schwere) durchkontakierte Lötstellen benötigen mehr Flussmittel. Ein höherer Flussmittelgehalt führt auch zu mehr sichtbaren Flussmittelrückständen nach dem Löten. Manchmal wird ein zusätzliches Flussmittel benötigt, das in den meisten Fällen ein flüssiges Rework- und Reparaturflussmittel ist, aber auch ein Gel-Flussmittel sein kann. Die Art des Flussmittels/Lötdrahtes wird durch die Lötbarkeit der zu lötenden Oberflächen bestimmt. Bei normaler Lötbarkeit von elektronischen Bauteilen und Leiterplatten ist ein absolut halogenfreies 'L0'-Flussmittel/Lötdraht empfehlenswert. Im Allgemeinen wird ein Handlötvorgang wie folgt durchgeführt: Stellen Sie die Temperatur der Lötspitze entsprechend der verwendeten Lotlegierung ein. Für bleifreie Legierungen liegt die empfohlene Arbeitstemperatur zwischen 320°C und 390°C. Bei dichteren Metallen wie Nickel kann die Temperatur bis auf 420°C erhöht werden. Die Verwendung einer guten Lötstation ist wichtig. Verwenden Sie eine Lötstation mit einer kurzen Reaktionszeit und mit ausreichender Leistung für Ihre Anwendung. Wählen Sie die richtige Lötspitze: Um den Wärmewiderstand zu verringern, ist es wichtig, eine möglichst große Kontaktfläche mit den zu lötenden Oberflächen zu schaffen. Erwärmen Sie beide Oberflächen gleichzeitig. Berühren Sie mit dem Lötdraht leicht die Stelle, an der sich die Lötspitze und die zu lötenden Flächen treffen (die geringe Menge an Lot sorgt für eine drastische Senkung des Wärmewiderstands). Führen Sie anschließend ohne Unterbrechung die richtige Menge Lötzinn zu in der Nähe der Lötspitze, ohne die Spitze zu berühren. Dies verringert das Risiko von Flussmittelspritzern und vorzeitigem Flussmittelverbrauch!

  • Nacharbeit und Reparatur an einer elektronischen Baugruppe kann bei defekten Baugruppen durchgeführt werden, die aus dem Feld zurückkommen, kann aber auch in einer elektronischen Produktionsumgebung notwendig sein, um Fehler in der Bestückung und Lötprozessen zu korrigieren. Typische Nacharbeit- und Reparaturverfahren umfassen das Entfernen von Lötbrücken, das Hinzufügen von Lot an schlecht durchgelöteten Durchkontaktierungen oder anderen Lötstellen, das Ersetzen fehlerhaft bestückter Bauteile, das Ersetzen von Bauteilen die in der falschen Richtung bestückt sind, das Ersetzen von Bauteilen die Defekte aufweisen die mit den hohen Löttemperaturen in den Prozessen zusammenhängen, das Hinzufügen von Bauteilen, die z.B. aufgrund von Verfügbarkeit oder Temperaturempfindlichkeit nicht in den Prozess einbezogen wurden,... Die Identifizierung dieser Fehler kann durch visuelle Inspektion, durch AOI (automatisierte optische Inspektion), durch ICT (In Circuit Testing, elektrische Prüfung) oder durch CAT (Computer Aided Testing, Funktionsprüfung) erfolgen. Viele Reparaturarbeiten können mit einer Handlötstation durchgeführt werden, die über einen (Ent-)Lötkolben mit Temperatureinstellung verfügt. Das Lötzinn wird mit einem Lötdraht aufgetragen, den es in verschiedenen Legierungen und Durchmessern gibt und der ein Flussmittel enthält. In manchen Fällen wird ein flüssiges Reparaturflussmittel und/oder ein Gel-Flussmittel verwendet, um das Handlöten zu erleichtern. Für größere Bauteile, wie BGAs (Ball Grid Array), LGAs (Land Grid Array), QFNs (Quad Flat No Leads), QFPs (Quad Flat Package), PLCCs (Plastic Leaded Chip Carrier),... kann ein Reparaturgerät verwendet werden das ein Reflowprofil simuliert. Diese Reparaturgeräte gibt es in verschiedenen Größen und mit unterschiedlichen Optionen. In den meisten Fällen verfügen sie über eine Vorheizung von der Unterseite, die in der Regel IR (Infrarot) ist. Diese Vorheizung kann über ein Thermoelement gesteuert werden, das auf der Leiterplatte angebracht ist. Einige Geräte verfügen über eine Bestückungseinheit, die die korrekte Positionierung des Bauteils auf der Leiterplatte erleichtert. Bei der Heizeinheit handelt es sich in der Regel um Heißluft oder IR oder eine Kombination aus beidem. Mit Hilfe von Thermoelementen auf der Leiterplatte wird die Heizung so gesteuert, dass das gewünschte Lötprofil entsteht. In manchen Fällen besteht die Herausforderung darin, das Bauteil auf Löttemperaturen zu bringen, ohne benachbarte Bauteile auf Löttemperatur zu bringen. Das kann schwierig sein, wenn das zu reparierende Bauteil groß ist und kleine Bauteile in der Nähe hat. Für BGAs mit Kugeln aus einer Lotlegierung kann ein Gel-Flussmittel oder ein flüssiges Flussmittel mit höherem Feststoffanteil verwendet werden. In diesem Fall wird das Lot für die Lötstelle von den Kugeln geliefert. Aber auch die Verwendung einer Lötpaste ist möglich. Die Lötpaste kann auf die Anschlüsse des Bauteils oder auf die Leiterplatte gedruckt werden. Dies erfordert für jedes Bauteil eine andere Schablone. Das BGA kann auch in eine spezielle Tauchlotpaste getaucht werden, die zunächst mit einer Schablone mit einer großen Öffnung und einer bestimmten Dicke in eine Schicht gedruckt wird. Bei QFNs, LGAs QFNs, QFPs, PLCCs,...muss Lot hinzugefügt werden, um eine Lötstelle zu erzeugen. In einigen Fällen können QFPs von Hand gelötet werden, aber die Technik erfordert Erfahrung. Deswegen wird die Verwendung eines Reparaturgeräts oft bevorzugt. QFPs und PLCCs haben Anschlussbeinchen und können mit einer Tauchlotpaste verwendet werden. QFNs, LGAs und QFNs, die keine Anschlussbeinchen, sondern flache Kontakte haben, können nicht mit einer Tauchlotpaste verwendet werden, da ihre Körper die Lotpaste berühren würden. In diesem Fall muss die Lötpaste auf die Kontakte oder auf die Leiterplatte gedruckt werden. Im Allgemeinen ist es einfacher, die Lötpaste auf das Bauteil zu drucken als auf die Leiterplatte, insbesondere wenn eine so genannte 3D-Schablone verwendet wird, die eine Aussparung hat, in dem die Position des Bauteils fixiert ist. Das Auswechseln von durchkontaktierten Bauteilen kann mit einer Handlötstation erfolgen. Dazu wird in der Regel eine hohle Entlötspitze auf die Unterseite des Bauteilanschlusses aufgesetzt, die das Lot aus dem Loch absaugen kann. Die Entlötspitze muss das gesamte Lot in der Durchkontaktierung erhitzen, bis es vollständig flüssig ist. Bei thermisch schweren Platinen kann dies sehr schwierig sein. In diesem Fall kann auch die Oberseite der Lötstelle mit einem Lötkolben erhitzt werden. Alternativ kann die Platine vor dem Entlöten über eine Vorheizung vorgewärmt werden. Das Löten der Durchkontaktierte Bauteile erfolgt in der Regel mit einem Lötdraht, der mehr Flussmittel enthält. Alternativ kann auch zusätzliches Reparaturflussmittel in die Durchkontaktierung und/oder auf den Bauteilanschluss gegeben werden. Bei größeren Steckern kann ein Tauchlötbad verwendet werden, um den Stecker zu entfernen. Wenn die Zugänglichkeit auf der Leiterplatte eingeschränkt ist, kann eine Düse verwendet werden, deren Größe an den Steckverbinder angepasst ist. Die Verwendung von Flussmittel bei diesem Vorgang wird empfohlen.

Die wichtigsten Vorteile

  • Kolophonium, auch 'Rosin' genannt, ist eine aus Bäumen gewonnene Substanz, die üblicherweise in Lötflussmitteln verwendet wird. Es kann sowohl in flüssigen Flussmitteln als auch in Gel-Flussmitteln verwendet werden. Kolophoniumhaltige Flussmittel sind in der IPC-Klassifizierung an der Bezeichnung 'RO' zu erkennen. Kolophonium bietet im Allgemeinen ein gutes Prozessfenster in Bezug auf Zeit und Temperatur, hat jedoch eine Reihe von Nachteilen, die von der Anwendung abhängen, für die das kolophoniumhaltige Flussmittel verwendet wird. Bei flüssigen Flussmitteln für das Wellen- und Selektivlöten besteht durch das Kolophonium ein erhöhtes Risiko, dass die Düse von Sprüh- und Jet-Fluxsystemen verstopft, was zu einem höheren Wartungsaufwand und einem höheren Risiko schlechter Lötergebnisse führt. Die Rückstände eines kolophoniumhaltigen Flussmittels in der Lötmaschine und auf den Werkzeugen und Trägern lassen sich nur schwer entfernen, so dass in der Regel ein lösungsmittelhaltiger Reiniger erforderlich ist. Wenn das kolophoniumhaltige Flussmittel versehentlich auf die Kontakte eines Steckverbinders oder auf Kontaktkammstrukturen wie bei einer Fernbedienung oder in elektromechanischen Kontaktoren/Relais/Schaltern gelangt, führt dies bekanntermaßen zu Kontaktproblemen und Fehlfunktionen der elektronischen Baugruppe im Feld. Darüber hinaus können die Rückstände des Flussmittels, die auf der Platine verbleiben, zu Kontaktproblemen bei elektrischen Tests ( ICT= In Circuit Testing) führen, was zu Verzögerungen in der Produktion aufgrund von falschen Messfehlern führen kann. Dies erfordert in der Regel eine Reinigung der Leiterplatte und/oder der Teststifte. Diese teuren Teststifte sind fragil und empfindlich und können durch die Reinigung beschädigt werden. Außerdem ist bekannt, dass die Rückstände eines Kolophonium-Flussmittels auf Dauer nicht mit Schutzlacken kompatibel sind. Die Kolophoniumrückstände bilden eine Trennschicht zwischen der Leiterplatte und dem Schutzlack, die mit der Zeit zu einer Ablösung des Schutzlackes und auch zu Rissen führen kann, insbesondere wenn die Elektronische Baugruppe vielen Temperaturzyklen (Aufwärmen und Abkühlen) ausgesetzt ist. Aus diesen Gründen werden für das Wellen- und Selektivlöten in der Regel Flussmittel ohne Kolophonium und mehr spezifisch Flussmittel der 'OR'-Klasse verwendet. Kolophonium kann auch in Lötdrähten verwendet werden. Obwohl das Kolophonium ein gutes Prozessfenster in Bezug auf Zeit und Temperatur bietet, ist es sehr empfindlich gegenüber Verfärbungen, wenn es erhitzt wird. Die Verfärbung hängt von der Art des Kolophoniums und der Temperatur ab, die es gesehen hat. Da die Lötspitzentemperaturen in der Regel recht hoch sind, führt das Kolophonium im Lötdraht zu einer ziemlich starken visuellen Rückstandsbildung um die Lötstellen. Dadurch unterscheiden sie sich von den anderen Lötstellen, vom Reflow-, Wellen- und Selektivlöten. Wenn dies nicht erwünscht ist, muss ein Reinigungsvorgang durchgeführt werden. Außerdem gelten die Dämpfe eines kolophoniumhaltigen Lötdrahtes als gefährlich. Eine Rauchgasabsaugung ist obligatorisch, aber sowieso immer ratsam für jeden Handlötvorgang. Kolophoniumhaltige Drähte werden immer noch häufig verwendet, aber kolophoniumfreie Lötdrähte und insbesondere Lötdrähte der 'RE'-Klassifizierung gewinnen zunehmend an Bedeutung. Kolophonium wird auch in Lotpasten verwendet. Es bietet nicht nur ein gutes Prozessfenster in Bezug auf Zeit und Temperatur, sondern sorgt auch für eine gute Stabilität der Lotpaste auf der Schablone. Dies ermöglicht einen stabilen Druckprozess und damit stabile Lötergebnisse und Fehlerquoten. Die Verfärbung des Kolophoniums beim Reflowlöten ist nicht so ausgeprägt wie bei einem Lötdraht, da die Temperaturen beim Reflowlöten niedriger sind als beim Handlöten. Dennoch haben die Kolophoniumrückstände schlechte Kompatibilität mit Schutzlack und können mit der Zeit nach thermischen Zyklen Risse oder Ablösungen des Schutzlackes zeigen. Obwohl die meisten Hersteller den Schutzlack über den Lotpastenrückständen auftragen, ist es für optimale Ergebnisse ratsam, die Lotpastenrückstände zu entfernen. Angesichts der oben beschriebenen Vorteile von Kolophonium enthalten die meisten Lotpasten Kolophonium.

  • Die Benetzungsfähigkeit eines Lötmittels bezieht sich darauf, wie gut die Aktivierung des Lötmittels in der Lage ist, Oxide von den zu lötenden Oberflächen zu entfernen. Diese Oxide müssen entfernt werden, damit die flüssige Lotlegierung in die zu lötenden Oberflächen eindringen kann. Wenn die Qualität der zu lötenden Oberflächen in der Elektronikfertigung normal ist, kann man ein Lötmittel der niedrigsten Aktivierungsklasse L0 verwenden. Im Allgemeinen wird nur dann ein Produkt mit höherer Aktivität oder erhöhter Benetzungsfähigkeit verwendet, wenn die Oberflächen degradiert sind oder wenn das Basismetall schwer zu löten ist. Solche Oberflächen können z.B. chemisches Sn sein, das zu dünn aufgetragen oder zu lange vor dem Löten gelagert wurde, Bauteile oder Leiterplatten, die zu lange in heißer und feuchter Umgebung gelagert wurden und stark oxidiert sind, ungeschütztes Ni, Messing,... Ein weiterer möglicher Grund für die Verwendung eines Produkts mit erhöhter Benetzungsfähigkeit ist die einfachere Handhabung. Ein Lötdraht mit erhöhter Benetzungsfähigkeit ermöglicht zum Beispiel ein schnelleres Löten und ist nicht so empfindlich gegenüber der korrekten Handhabung, die für eine gute Handlötstelle erforderlich ist. Beim Handlöten in großen Volumen von elektronischen Geräten die nicht so hohe Anforderungen an die Rückstände nach dem Löten haben, werden oft Lötdrähte mit erhöhter Benetzungsfähigkeit verwendet. Auch beim Roboterlöten und Laserlöten werden häufig Lötdrähte mit erhöhter Benetzungsfähigkeit verwendet, da sie generell bessere Eigenschaften für diese Prozesse haben.

  • RoHS steht für Restriction of Hazard Substances (Beschränkung gefährlicher Stoffe). Es handelt sich um eine europäische Richtlinie: Richtlinie 2002/95/EG. Sie schränkt die Verwendung einiger Stoffe, die als besonders besorgniserregende Stoffe (SHVC = Substances of Very High Concern) gelten, in elektrischen und Elektronikgeräten für das Gebiet der Europäischen Union ein. Eine Liste dieser Stoffe finden Sie unten: Bitte beachten Sie, dass sich diese Informationen jederzeit ändern können. Informieren Sie sich immer auf der Website der Europäischen Union über die neuesten Informationen: https://ec.europa.eu/environment/topics/waste-and-recycling/rohs-directive_nl https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32011L0065 1. Cadmium und Cadmiumverbindungen 2. Blei und Bleiverbindungen 3. Quecksilber und Quecksilberverbindungen (Hg) 4. Sechswertige Chromverbindungen (Cr) 5. Polychlorierte Biphenyle (PCB) 6. Polychlorierte Naphthaline (PCN) 7. Chlorierte Paraffine (CP) 8. Andere chlorierte organische Verbindungen 9. Polybromierte Biphenyle (PBB) 10. Polybromierte Diphenylether (PBDE) 11. Andere bromierte organische Verbindungen 12. Organische Zinnverbindungen (Tributylzinnverbindungen, Triphenylzinnverbindungen) 13. Asbest 14. Azo-Verbindungen 15. Formaldehyd 16. Polyvinylchlorid (PVC) und PVC-Mischungen 17. Dekabromierte Diphenylester (ab 1/7/08) 18. PFOS : EU-Richtlinie 76/769/EWG (nicht zulässig in einer Konzentration von 0,0005 Massenprozent oder mehr) 19. Bis(2-ethylhexyl)phthalat (DEHP) 20. Butylbenzylphthalat (BBP) 21. Dibutylphthalat (DBP) 22. Diisobutylphthalat 23. Deca bromierter Diphenylester (in elektrischen und elektronischen Geräten) Andere Länder außerhalb der Europäischen Union haben ihre eigene RoHS-Gesetzgebung eingeführt, die der europäischen RoHS größtenteils sehr ähnlich ist.

  • Eine erhöhte Aktivität eines Lötprodukts kann für Oberflächen mit schlechter Lötbarkeit erforderlich sein, wie z.B. Messing, ungeschütztes Ni, oxidiertes Ag, Cu, das nicht mikrogeätzt wurde,... oder Oberflächen mit reduzierter Lötbarkeit, wie z.B. I-Sn, das zu lange gelagert wurde oder zu viel Wärme ausgesetzt war, Cu-OSP, das vor zu langer Zeit ein bleifreies Reflowprofil durchlaufen hat,... Ein Hinweis auf die Aktivität eines Lötprodukts ist seine Klassifizierung. Die gängigste und meist akzeptierte Klassifizierung für Lötprodukte ist die IPC. L0 ist die niedrigste Aktivierungsklasse und der Standard, sie sollte für alle konventionellen Oberflächen normaler Qualität geeignet sein, die in der Elektronikfertigung verwendet werden. L1 ist die niedrigste Aktivierungsklasse, aber mit einem Halogengehalt von bis zu 0,5%. Diese Halogene führen in den meisten Fällen bereits zu einem besseren Ergebnis auf vielen der zuvor genannten Oberflächen mit schlechter oder verschlechterter Lötbarkeit. Die anderen Aktivierungsklassen sind M0 und M1 sowie H0 und H1. M steht für Mittel und H steht für Hoch. 0 steht für bis zu 500ppm Halogene sowohl für M0 als auch für H0. 1 steht für bis zu 2% Halogene für die Klasse M1 und für H1 sind mehr als 2% Halogene erlaubt. Lötprodukte der Klasse H sind mit Vorsicht zu behandeln, da sie korrosiv sein können und gereinigt werden müssen, vorzugsweise in einem automatisierten Reinigungsverfahren.