LMPA Oil

Desoxidationsöl

LMPA-Oil ist ein Wartungsöl für die nicht benetzbaren Teile von Lötdüsen und für Pumpenachsen beim Eisatz der niedrigschmelzenden Lotlegierung LMPA-Q in Wellen- oder Selektivlötmaschinen. LMPA-Öl verhindert, dass das Lot an den Oberflächen haftet und den Lotfluss behindert.

LMPA Oil

Geeignet für

  • Wellenlöten ist ein Massenlötverfahren, das in der Elektronikfertigung verwendet wird, um elektronische Bauteilen mit einer Leiterplatte zu verbinden. Das Verfahren wird in der Regel für Bauteilen mit Durchkontaktierungen verwendet, kann aber auch zum Löten einiger SMD-Bauteile (Suface Mount Device) eingesetzt werden, die mit einem SMT-Kleber (Surface Mount Technology) auf die Unterseite der Leiterplatte geklebt werden, bevor sie den Wellenlötprozess durchlaufen. Der Wellenlötprozess umfasst drei Hauptschritte: Fluxen, Vorheizen und Löten. Ein Förderband transportiert die Leiterplatten durch die Maschine. Die Leiterplatten können in einem Rahmen befestigt werden, damit die Breite des Förderbandes nicht für jede einzelne Leiterplatte angepasst werden muss. Das Fluxen erfolgt in der Regel mit einem Sprühfluxer, aber auch Schaumfluxen und Jet-Fluxen sind möglich. Das flüssige Flussmittel wird von der Unterseite der Leiterplatte auf die Oberfläche und in die Durchkontaktierungen aufgetragen. Der Zweck des Flussmittels ist es, die lötbaren Oberflächen der Leiterplatte und der Bauteilen zu desoxydieren und der flüssigen Lotlegierung zu ermöglichen, eine intermetallische Verbindung mit diesen Oberflächen einzugehen, wodurch eine Lötstelle entsteht. Das Vorheizen hat drei Hauptfunktionen. Das Lösungsmittel des Flussmittels muss verdampft werden, da es nach dem Auftragen seine Funktion verliert und zu Lötfehlern wie Lötspritzer und Lötperlen führen kann, wenn es im flüssigen Zustand mit der Lötwelle in Berührung kommt. Flussmittel auf Wasserbasis benötigen im Allgemeinen mehr Vorheizung zum Verdampfen als Flussmittel auf Alkoholbasis. Die zweite Funktion des Vorheizens besteht darin, den Wärmeschock zu begrenzen, wenn die Leiterplatte mit dem flüssigen Lot der Lötwelle in Berührung kommt. Dies kann für einige SMD-Bauteile und Leiterplattenmaterialien wichtig sein. Die dritte Funktion des Vorheizens besteht darin, den Durchstieg des Lots in den Durchkontaktierungen zu fördern. Aufgrund des Temperaturunterschieds zwischen der Leiterplatte und dem flüssigen Lot wird das flüssige Lot abgekühlt, wenn es in die Durchkontaktierung eindringt. Thermisch schwere Leiterplatten und Bauteilen können dem flüssigen Lot so viel Wärme entziehen, dass es bis zum Erstarrungspunkt abgekühlt wird, wo es erstarrt, bevor es nach oben gelangt. Dies ist ein typisches Problem bei der Verwendung von Sn(Ag)Cu-Legierungen. Eine gute Vorheizung begrenzt den Temperaturunterschied zwischen der Leiterplatte und dem flüssigen Lot und verringert somit die Abkühlung des flüssigen Lots beim Aufstieg in die Durchkontaktierung. Dadurch ist die Chance größer, dass das flüssige Lot die Oberseite der Durchkontaktierung erreicht. In einem dritten Schritt wird die Leiterplatte über eine Lötwelle geführt. Ein Bad, das mit einer Lotlegierung gefüllt ist, wird auf Löttemperatur erw¨rmt. Diese Löttemperatur hängt von der verwendeten Lotlegierung ab. Die flüssige Legierung wird durch Kanäle in einen Wellenformer gepumpt. Es gibt verschiedene Arten von Wellenformern. Ein traditioneller Aufbau ist eine Chip-Welle in Kombination mit einer laminaren Hauptwelle. Die Chip-Welle pumpt das Lot in Richtung der Leiterplattenbewegung und ermöglicht das Löten der Rückseite von SMD-Bauteilen, die durch den Körper des Bauteils selbst vom Wellenkontakt in der laminaren Welle abgeschirmt sind (Schatteneffekt). Die laminare Hauptwelle fließt nach vorne, aber die verstellbare Rückplatte ist so positioniert, dass die Leiterplatte die Welle in einen Rückfluss drückt. Dadurch wird vermieden, dass die Leiterplatte durch die Reaktionsprodukte des Lötens gezogen wird. Ein Wellenformer, der immer beliebter wird, ist die Wörthmann-Welle, die die Funktion der Chip-Welle und der Hauptwelle in einer Welle vereint. Diese Welle ist empfindlicher für die richtige Einstellung und Brückenbildung. Da bleifreie Lotlegierungen hohe Arbeitstemperaturen benötigen und zur starken Oxidation neigen, werden viele Wellenlötprozesse unter Stickstoffatmosphäre durchgeführt. Eine neue Markttendenz, die von einigen als die Zukunft des Lötens angesehen wird, ist die Verwendung einer Legierung mit niedrigem Schmelzpunkt wie z.B. LMPA-Q. LMPA-Q benötigt weniger Temperatur und reduziert die Oxidation. Sie hat auch einige kostenbezogene Vorteile, wie z.B. einen geringeren Stromverbrauch, geringeren Verschleiß der Lötrahmen und keinen Bedarf an Stickstoff. Außerdem wird die thermische Belastung der elektronischen Bauteilen und der Leiterplattenmaterialien geringer.

  • Selektivlöten ist eine Löttechnologie in der Elektronikfertigung, die typischerweise für Leiterplattendesigns mit hauptsächlich SMD-Bauteilen (Surface Mount Device) für das Reflowlöten und nur wenigen durchkontaktierten Bauteilen die den Reflowlötprozess nicht durchlaufen können, verwendet wird. Dabei handelt es sich in der Regel um thermisch schwere Bauteile wie z.B. große Transformer oder thermisch empfindliche Bauteile wie z.B. Folienkondensatoren, Displays, Steckverbinder mit empfindlichen Kunststoffgehäusen, Relais, usw.. Der Selektivlötprozess ermöglicht es, diese durchkontaktierten Bauteile zu löten, ohne die SMD-Bauteile auf der Unterseite der Leiterplatte zu beeinträchtigen oder schützen zu müssen. Der Selektivlötprozess ist sehr flexibel, da die Parameter für jede Lötstelle separat programmiert werden können. Die größte Einschränkung des Prozesses ist jedoch der Durchsatz oder die Produktionskapazität. Diese kann erheblich verbessert werden, wenn eine Legierung mit niedrigem Schmelzpunkt verwendet wird, die eine schnellere Lötgeschwindigkeit ermöglicht und die Produktionskapazität auf bis zu 100% (das Doppelte) erhöht. Der Prozess beginnt mit dem Auftragen eines flüssigen Flussmittels, das die zu lötenden Oberflächen desoxidiert. Dieses Flussmittel wird mit einem Microjet- oder Dropjet-Fluxer aufgetragen, der sehr kleine Tropfen jettet. Die richtige Kalibrierung und Programmierung dieses Fluxers ist entscheidend für gute Lötergebnisse. Ein häufiger Fehler ist, dass das Flussmittel außerhalb des Kontaktbereichs der Lötdüse aufgetragen wird. Dieses Flussmittel verbleibt dann als nicht verbrauchter Flussmittelrückstand. Bei einigen Flussmitteln und empfindlichen elektronischen Schaltungen kann dies zu erhöhten Fehlströmen und Ausfällen vom elektronischen Gerät im Feld führen. Es ist ratsam, Flussmittel zu verwenden, die speziell für das Selektivlöten entwickelt wurden und die absolut halogenfrei sind. Die IPC-Klassifizierung für Flussmittel erlaubt bis zu 500ppm Halogene für die niedrigste Aktivierungsklasse, aber auch diese 500ppm können kritisch sein. Daher ist absolut halogenfrei das Schlüsselwort. Der nächste Schritt im Prozess ist das Vorheizen. Bei diesem Prozessschritt werden die Lösungsmittel des Flussmittels verdampft und Wärme in der Baugruppe gebracht um eine gute Benetzung des Lots durch die Löcher zu unterstützen. Löten ist ein thermischer Prozess, und für die Bildung einer Lötstelle ist eine gewisse Menge an Wärme erforderlich. Diese Wärme wird sowohl von der Unterseite als auch von der Oberseite der zu lötenden Durchkontaktierte Bauteile benötigt. Diese Wärme kann durch das Vorheizen und durch die flüssige Lotlegierung angebracht werden. Einige einfache Maschinen haben keine Vorheizung, sie müssen die gesamte Wärme über die flüssige Lotlegierung zuführen und verwenden generell höhere Temperaturen zum Löten. Eine Vorheizung ist in der Regel ein kurzwelliges IR-Gerät (Infrarot), das die Wärme von der Unterseite der Leiterplatte anbringt. In den meisten Fällen können die Zeit und die Leistung der Vorheizung programmiert werden. Für thermisch schwere Leiterplatten und Anwendungen gibt es Vorheizungsmodulen von der Oberseite. In der Regel handelt es sich dabei um Heißluftgeräte (Konvektion), bei denen die Temperatur der Luft programmiert werden kann. Wenn Sie ein solches Gerät verwenden, ist es wichtig zu wissen, ob sich auf der Oberseite der Platine temperaturempfindliche Bauteilen befinden, die von dieser Vorheizung beeinträchtigt werden könnten. Es gibt mehrere Systeme zum Löten. Dasjenige, bei dem die Leiterplatte stillsteht und sich nur die Lötdüse bewegt, ist definitiv vorzuziehen, da jegliche G-Kräfte beim Erstarren des Lots vermieden werden sollten. Beim Löten wird eine flüssige Lotlegierung durch eine Lötdüse gepumpt, wobei es verschiedene Düsengrößen und -formen gibt, breite Düsen, kleine Düsen, lange Düsen und kurze Düsen. Je nach den zu lötenden Bauteilen wird die eine oder der anderen bevorzugt. Generell bieten breitere und kürzere Düsen eine bessere Wärmeübertragung und werden daher bevorzugt. Kleinere und längere Düsen können für Situationen mit eingeschränkter Zugänglichkeit verwendet werden. Benetzbare Düsen sind nicht benetzbaren Düsen vorzuziehen, da sie ein viel gleichmäßigeres Fließen des Lots und stabilere Lötergebnisse ermöglichen. Um ein stabiles Fließen des Lots zu erreichen, ist es ratsam, die Düse mit Stickstoff zu fluten. Der Stickstoff wird vorzugsweise vorgewärmt, da er sonst das Lot und die Leiterplatte abkühlt. Die Optimierung des Lötprogramms ist entscheidend für die Optimierung des Durchsatzes/der Kapazität der Selektivlötmaschine. Dabei geht es darum, die minimalen Zeiten und maximalen Geschwindigkeiten zu finden, die eine guten Durchstieg in den Durchkontaktierungen in Kombination mit keiner Brückenbildung ermöglichen.

  • Der Begriff 'niedriger Schmelzpunkt' bezieht sich auf den Schmelzpunkt oder den Schmelzbereich einer Lotlegierung, der niedriger ist als der von den konventionellen bleifreien Legierungen, bei denen es sich in der Regel um Sn(Ag)Cu-Legierungen handelt. Die überwiegende Mehrheit der Legierungen mit niedrigem Schmelzpunkt enthält Bi aufgrund der schmelzpunktsenkenden Eigenschaft von Bi. Der Hauptgrund für den Einsatz von Legierungen mit niedrigem Schmelzpunkt ist die Temperaturempfindlichkeit einiger elektronischer Bauteilen und Leiterplattenmaterialien. Diese Bauteile und Materialien können durch die für Sn(Ag)Cu-Legierungen verwendeten Löttemperaturen beschädigt oder vorgeschädigt werden. Dies kann zu einem frühzeitigen Ausfall des elektronischen Geräts im Gebrauch führen, was eine teure Reparatur und in einigen Fällen gefährliche Situationen zur Folge haben kann. Niedrigschmelzende Legierungen ermöglichen wesentlich niedrigere Löttemperaturen und verringern so das Risiko, dass temperaturempfindliche Bauteilen und Leiterplattenmaterialien (vor)beschädigt werden. Eine niedrigschmelzende Lötlegierung wie z.B. LMPA-Q erfordert viel niedrigere Betriebstemperaturen als die standardmäßigen bleifreien Lötlegierungen. Beim Reflowlöten ist eine Peak-Temperatur von 190°C-210°C erforderlich, beim Wellenlöten beträgt die Badtemperatur typischerweise 220°C-230°C und beim Selektivlöten liegt die Arbeitstemperatur typischerweise bei 240°C-250°C. Beim Reflowlöten führt die Legierung mit dem niedrigen Schmelzpunkt auch zu einer geringeren Lunkerbildung (Voidbildung) bei BTCs (Bottom Terminated Components, Bauteile mit den Anschlüssen auf der Unterseite). Im Allgemeinen weisen Legierungen mit niedrigem Schmelzpunkt weniger als 10% Lunker(Voids) auf, während bleifreie SAC-Legierungen in der Regel 20-30% Lunker aufweisen. Beim Wellenlöten ermöglicht die niedrigschmelzende Legierung schnellere Produktionsgeschwindigkeiten von bis zu 70% und beim Selektivlöten, bei dem das Löten von Steckern mit bis zu 50mm/s erfolgen kann, kann die Gesamtprozesszeit um die Hälfte reduziert werden, wodurch die Maschinenkapazität um 100% erhöht wird. Außerdem hat die Legierung mit dem niedrigen Schmelzpunkt keine Probleme mit Durchstieg in den Durchkontaktierungen bei thermisch schweren Bauteilen. Die Verwendung von Stickstoff beim Wellen- und Reflowlöten ist möglich, aber nicht erforderlich. Die thermischen, elektrischen und mechanischen Eigenschaften der LMPA-Q-Legierung mit niedrigem Schmelzpunkt sind für die meisten elektronischen Anwendungen ausreichend. In Anbetracht all dieser Vorteile betrachten viele die Legierungen mit niedrigem Schmelzpunkt als die Zukunft der Elektronikfertigung.